
Version Control
EOAS Software Carpentry Workshop

September 20th, 2016



Automated Version Control

Learning Goals

1. Understand the benefits of an automated version control
system.

2. Understand the basics of how Mercurial works



”Piled Higher and
Deeper” by Jorge Cham,
http://www.phdcomics.com



Automated Version Control

Changes are saved sequentially



Automated Version Control

Different versions can be saved



Automated Version Control

Multiple versions can be merged



Configuring Mercurial

$ EDITOR=nano hg config --edit

[ui]

username = Vlad Dracula <vlad@tran.sylvan.ia>

editor = nano

[extensions]

color =

[color]

mode = win32



Creating a Repository

Learning Goal

1. Explain how to initialize a new Mercurial repository.

Lesson Commands

• mkdir forecast
• cd forecast
• hg init

• ls -a

• hg verify



Tracking Files

Learning Goals

1. Display the version control status of files in a repository and
explain what those statuses mean.

2. Add files to Mercurial’s collection of tracked files.

3. Record metadata about changes to a file.

4. Display the history of changes to files in a repository and
explain the metadata that is recorded with each changeset.

Lesson Commands

• nano plan.txt

• hg status

• hg add plan.txt

• hg commit -m ”Starting to
plan the daily NEMO
forecast system.”

• hg log



Making Changes

Learning Goals

1. Display the uncommitted changes that have been made to
tracked files.

2. Go through the modify-commit cycle for single and multiple
files.

Lesson Commands

• nano plan.txt

• hg status

• hg diff

• hg commit -m ”Note about
atmospheric forcing.”

• hg commit plan.txt -m
”Add note about Fraser
river data source.”



Exercise

Create a new Mercurial repository on your computer called bio.
Write a three-line biography for yourself in a file called me.txt,
commit your changes, then modify one line and add a fourth and
display the differences between its updated state and its original
state.



Exploring History

Learning Goals

1. Compare files with older versions of themselves.

2. Display the changes that were made to files in a previous
changeset.

Lesson Commands

• hg diff --rev 1:2 plan.txt
• hg diff -r 0:2 plan.txt

• hg diff --change 1



Recovering Old Versions

Learning Goals

1. Restore older versions of files.

2. Use configuration aliases to create custom Mercurial
commands.

Lesson Commands

• nano plan.txt

• hg revert plan.txt

• hg revert --rev 0 plan.txt

• hg status



Ignoring Things

Learning Goal

1. Configure Mercurial to ignore specific files and explain why it
is sometimes useful to do so.

Lesson Commands

• mkdir inprogress

• touch plan.txt inprogress/a.out inprogress/b.out

• hg status

• nano .hgignore

• hg status --ignored



.hgignore

syntax: glob

*~

inprogress/



Ignoring Things

Learning Goal

1. Configure Mercurial to ignore specific files and explain why it
is sometimes useful to do so.

Lesson Commands

• mkdir inprogress

• touch plan.txt inprogress/a.out inprogress/b.out

• hg status

• nano .hgignore

• hg status --ignored



Remote Repositories

Learning Goals

1. Explain what remote repositories are and why they are useful.

2. Explain what happens when a remote repository is cloned.

3. Explain what happens when changes are pushed to or pulled
from a remote repository.

Lesson Commands

• hg push

• hg config --local

• hg paths

• hg pull



Remote Repositories

Local and Bitbucket Repos After 1st Push



Remote Repositories

Learning Goals

1. Explain what remote repositories are and why they are useful.

2. Explain what happens when a remote repository is cloned.

3. Explain what happens when changes are pushed to or pulled
from a remote repository.

Lesson Commands

• hg push

• hg config --local

• hg paths

• hg pull



Exercise

Create a repository on Bitbucket, clone it, add a file, push those
changes to Bitbucket. Look at the timestamp of the change on
Bitbucket. How does Bitbucket record times, and why?



Working with Clone Repositories

Learning Goals

1. Explain how to push, pull, update files, and update metadata
among clones of a repository.

2. Display a simple visualization of the state of a repository and
explain how updating the repository affects its state.

Lesson Commands

• hg clone

• hg add

• hg commit

• hg push

• hg pull

• hg log --graph

• hg update



Working with Clone Repositories

After Creating work and home Clones



Working with Clone Repositories

After Pushing Change from work Clone



Working with Clone Repositories

After Pulling Change into home Clone



Working with Clone Repositories

Learning Goals

1. Explain how to push, pull, update files, and update metadata
among clones of a repository.

2. Display a simple visualization of the state of a repository and
explain how updating the repository affects its state.

Lesson Commands

• hg clone

• hg add

• hg commit

• hg push

• hg pull

• hg log --graph

• hg update



Collaboration

Learning Goals

1. Explain the differences between public and private repositories
on Bitbucket.

2. Configure user and group access settings for Bitbucket
repositories.



Merging Changes from Different Clones

Learning Goals

1. Explain how Mercurial handles changes that make a
repository’s history diverge.

2. Explain what merges are.

Lesson Commands

• hg commit
• hg push
• hg pull
• hg heads
• hg log -G

• hg merge

• hg status

• hg diff

• hg summary



Merge Conflicts

Learning Goals

1. Explain what merge conflicts are and when they can occur.

2. Resolve conflicts resulting from a merge using the KDiff3 tool.

Lesson Commands

• hg incoming

• hg pull

• hg update

• hg log --graph

• hg merge --tool=kdiff3


