
Shell

Shell

1

Shell

Introduction

Learning Goals

1 Explain how the shell relates to the keyboard, the screen, the
operating system, and users’ programs.

2 Explain when and why command-line interfaces should be used
instead of graphical interfaces.

2

Shell

Files and Directories

1 Explain the similarities and differences between a file and a directory.
2 Translate an absolute path into a relative path and vice versa.
3 Construct absolute and relative paths that identify specific files and

directories.
4 Explain the steps in the shell’s read-run-print cycle.
5 Identify actual command, flags, and filenames in command-line call.
6 Demonstrate the use of tab completion, and explain its advantages.

whoami

pwd

/

ls

ls -F

ls -F data

ls -F /data

cd data

cd ..

ls -F -a

ls
north-pacific-gyre/2012-07-03

ls no tab

3

Shell

Creating Things

1 Create a directory hierarchy that matches a given diagram.

2 Create files in that hierarchy using an editor or by copying and
renaming existing files.

3 Display the contents of a directory using the command line.

4 Delete specified files and/or directories.

mkdir thesis

cd thesis

nano draft.txt

rm draft.txt

rm thesis

rmdir thesis

rm -r thesis

mv thesis/draft.txt
thesis/quotes.txt

mv thesis/quotes.txt .

cp quotes.txt
thesis/quotations.txt

4

Shell

Create a workspace on your desktop so that it’s easy to find, and easy to
explore with your GUI filesystem tool (Explorer, Finder, Nautilus, ...)

$ cd

$ cd Desktop

$ mkdir swc

$ cd swc

5

Shell

A bug in recent versions of nano on Windows causes the Git Bash terminal
windows to be blanked when nano exits – annoying.

A work-around for the issue is to open another Git Bash window and run
nano there. Of course you will have to cd in both windows as you move
around the file system.

An alternative is to download and install the Notepad++ editor and ask
one of the helpers or instructors to help you add Notepad++ to your
PATH – the list of directories that the shell looks in to find the programs
you ask it to run.

6

Shell

Creating Things

1 Create a directory hierarchy that matches a given diagram.

2 Create files in that hierarchy using an editor or by copying and
renaming existing files.

3 Display the contents of a directory using the command line.

4 Delete specified files and/or directories.

mkdir thesis

cd thesis

nano draft.txt

rm draft.txt

rm thesis

rmdir thesis

rm -r thesis

mv thesis/draft.txt
thesis/quotes.txt

mv thesis/quotes.txt .

cp quotes.txt
thesis/quotations.txt

7

Shell

Exercise

What command(s) could you run so that the commands below will
produce the output shown? (and do it)

$ ls

analyzed raw

$ ls analyzed

fructose.dat glucose.dat sucrose.dat

8

Shell

Pipes and Filters

1 Redirect a command’s output to a file.
2 Process a file instead of keyboard input using redirection.
3 Construct command pipelines with two or more stages.
4 Explain what usually happens if a program or pipeline isn’t given any

input to process.
5 Explain Unix’s ”small pieces, loosely joined” philosophy.

cd molecules

wc *.pdb

*, ?

wc -l

wc –help

wc -l *.pdb > lengths

cat lengths

sort lengths

sort lengths > sorted-lengths

head -1 sorted-lengths

sort lengths | head -1

cd
north-pacific-gyre/2012-07-03

wc -l *.txt

wc -l *.txt | sort | head -5

ls *Z.txt
9

Shell

We’re going to start working with Nelle Nemo’s Great Pacific Garbage
Patch files, so everybody needs a copy of her directories and files so that
you can pretend that you are Nelle.
Use Mercurial to grab the files from Bitbucket and put them in a nnemo
directory in your SWC workspace:

$ cd

$ cd Desktop/swc

$ hg clone https://bitbucket.org/douglatornell/swc-nelle-files nnemo

You can copy and paste the hg clone command from the Etherpad. We’ll
learn what it means in the Version Control with Mercurial section later
today.

10

Shell

Pipes and Filters

1 Redirect a command’s output to a file.
2 Process a file instead of keyboard input using redirection.
3 Construct command pipelines with two or more stages.
4 Explain what usually happens if a program or pipeline isn’t given any

input to process.
5 Explain Unix’s ”small pieces, loosely joined” philosophy.

cd molecules

wc *.pdb

*, ?

wc -l

wc –help

wc -l *.pdb > lengths

cat lengths

sort lengths

sort lengths > sorted-lengths

head -1 sorted-lengths

sort lengths | head -1

cd
north-pacific-gyre/2012-07-03

wc -l *.txt

wc -l *.txt | sort | head -5

ls *Z.txt
11

Shell

Loops - Part 1

1 Write a loop that applies one or more commands separately to each
file in a set of files.

2 Trace the values taken on by a loop variable during execution of the
loop.

3 Explain the difference between a variable’s name and its value.

4 Explain why spaces and some punctuation characters shouldn’t be
used in files’ names.

for ... do ... done

varname, $varname

echo

”$varname”

12

Shell

Loops - Part 2

1 Demonstrate how to see what commands have recently been
executed.

2 Re-run recently executed commands without retyping them.

ls *[AB].txt

Up-Arrow

history

Ctrl-A, Ctrl-E

Ctrl-R

Ctrl-C

13

Shell

Exercise

In your analyzed directory, what is the effect of this loop?

for sugar in *.dat

do

echo $sugar

cat $sugar > xylose.dat

done

1 Prints fructose.dat, glucose, and sucrose, and copies sucrose

to create xylose.

2 Prints fructose, glucose, and sucrose, and concatenates all three
files to create xylose.

3 Prints fructose, glucose, sucrose, and xylose, and copies
sucrose to create xylose.

4 None of the above.

14

Shell

Shell Scripts

1 Write a shell script that runs a command or series of commands for a
fixed set of files.

2 Run a shell script from the command line.

3 Write a shell script that operates on a set of files defined by the user
on the command line.

4 Create pipelines that include user-written shell scripts.

bash myscript.sh

$1, $2, ... $n, $*

comment

history | tail -4 > script.sh

15

Shell

Exercise

Write a shell script called longest.sh that takes the name of a directory
and a filename extension as its parameters, and prints out the number of
lines, directory, and name of the file with the most lines in that directory
with that extension. For example:

$ bash longest.sh more-molecules pdb

would print the number of lines, directory, and name of the .pdb file in
more-molecules that has the most lines.

16

Shell

Finding Things

1 Use grep to select lines from text files that match simple patterns.

2 Use find to find files whose names match simple patterns.

3 Use the output of one command as the command-line parameters to
another command.

4 Explain what is meant by ”text” and ”binary” files, and why many
common tools don’t handle the latter well.

17

